Water Online

SEP 2016

Water Innovations gives Water and Wastewater Engineers and end-users a venue to find project solutions and source valuable product information. We aim to educate the engineering and operations community on important issues and trends.

Issue link: http://wateronline.epubxp.com/i/716370

Contents of this Issue

Navigation

Page 14 of 46

fertilizer byproduct is both economically and environmentally viable. Removing phosphorus from the water and reusing it for agricultural production represents a significant shift in the wastewater industry from treatment to recovery for reuse. "The MWRD is dedicated to becoming the utility of the future," said MWRD President Mariyana Spyropoulos. "Ostara's technology is a solution to managing the overabundance of phosphorus while creating a revenue stream through the sale of the fertilizer. This is a win for the environment and a win for Cook County taxpayers." While the reduction of phosphorus in the water flowing downstream to the Gulf of Mexico is a major achievement, it is the local result that excites visitors and residents of Chicago on the one hand and agricultural communities on the other. Interest in the Chicago River and area waterways is at the highest level it has ever been; in response, riverwalks are being constructed, economic development within surrounding neighborhoods is booming, and recreational use has skyrocketed. In the meantime, phosphorus is a valuable, but nonrenewable, resource; it is an essential element for plant growth, and high-yield agricultural production relies on a perpetual supply of it in fertilizers. Unfortunately, it is in dwindling supply due to the expansion of high-production agriculture worldwide. To meet this important need, Ostara will market and sell Crystal Green to a global network of professionals in the agriculture, turf, and horticulture markets. Presently, Ostara is working to market Crystal Green to Illinois farmers, closing the phosphorus loop. The facility will have the production capacity to grow 1 billion pounds of potatoes — or 250 million bags of potato chips — annually. "For Ostara, partnering with MWRD is a milestone in successfully scaling up our technology to serve the largest wastewater treatment facility in the world, providing a cost-effective and environmentally progressive solution to support their clean water mandate," said Ostara President and CEO Phillip Abrary. "We are proud to be part of a solution that will ultimately help protect the Mississippi River Basin and provide revenue to the District from the sale of the high value phosphorus fertilizer recovered to benefit ratepayers." By placing a critical eye on the bottom line, the MWRD's Stickney WRP has transformed a harmful consequence of its processes into a revenue-producing product. This investment in the phosphorus recovery facility will also go a long way toward protecting the entire planet, while influencing others to embrace this exciting technology. Other Nutrient-Reducing Activities The MWRD is taking a diversified approach to addressing nutrient removal from wastewater. In addition to the production of the Crystal Green product, the MWRD modified the wastewater treatment process at the Stickney WRP last year to incorporate a process called Enhanced Biological Phosphorus Removal (EBPR). The EBPR process carefully controls conditions in the aeration reactor to cause the microbiological organisms in the reactor to uptake more phosphorus than normal. When the organisms are digested in the anaerobic digesters, they release the phosphorus. The phosphorus then ends up in the Crystal Green product and in biosolids, which are applied to the land as a soil amendment, thus returning the phosphorus to the land. Although the EBPR process is complex to control, it is a more sustainable approach than traditional methods of phosphorus removal that use inorganic chemicals to bind to the phosphorus and remove it through precipitation. Another approach to nutrient removal that the MWRD is pursuing involves the natural uptake of phosphorus and nitrogen from water to support the growth of algae through photosynthesis, utilizing the sun as its energy source. This same approach can be applied to wastewater treatment as a means to remove nutrients from the waste stream without the use of inorganic chemicals or energy-consuming aeration, which is the traditional means of nutrient removal. The algae can then be harvested and utilized as a raw material in the manufacture of a variety of products, such as biofuels and bioplastics, which will also reduce the reliance on petroleum. The algae can also be composted with biosolids and land-applied as a soil amendment, digested to produce biogas, or processed as aquaculture feed — all of which return the phosphorus to the nutrient cycle. The concept of using algae to remove nutrients from wastewater is not new. However, traditional approaches that use large algal ponds are not practical in an urban environment where land is scarce. As a result, the MWRD is conducting leading-edge research in this field to help make algae nutrient recovery technology a practical and sustainable approach to nutrient management for urban wastewater treatment plants. Also underway is the implementation of AnitaMox™, a deammonification process that will significantly reduce the concentration of ammonia-nitrogen in a high-ammonia concentration sidestream at the Egan WRP in Schaumburg, IL. This process fosters the growth of specialized bacteria that convert the ammonia into nitrogen gas in a way that can save 2 million kWh annually in energy consumption versus the current ammonia treatment method that uses aeration. This process is a step toward the MWRD's goal of implementing deammonification technology for mainstream application. If successful, this process will completely change the way nitrogen is removed from wastewater and will conservatively reduce energy usage by 40 percent, saving 120 million kWh annually — the equivalent energy provided by 15 utility-scale wind turbines or enough energy for 4,500 homes. Learn more information about the MWRD at www.mwrd.org; follow us on Twitter @mwrdgc or like us on Facebook. n wateronline.com n Water Innovations Allison Hirsch Fore has served as the Public & Intergovernmental Affairs Officer at the MWRD for five years. She has more than 20 years' experience in government communications, having also worked for the Illinois State Treasurer, Illinois General Assembly, Indiana Secretary of State, and Indiana Department of Environmental Management. She received her Bachelor of Science degree from Indiana University's School of Public and Environmental Affairs and Master of Arts degree from University of Chicago's School of Social Service Administration. About The Author The phosphorus recovered from the MWRD's Stickney WRP is converted into a continuous release fertilizer product called Crystal Green ® . RESOURCERECOVERY 10

Articles in this issue

Links on this page

Archives of this issue

view archives of Water Online - SEP 2016